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The conditions of propagation of a three-ray X-optical field in a crystal built of non-absorbing point 
atoms are discussed. The discussion follows the outline published in 1937 by one of the authors and 
is held as general as possible, so as to be applicable to cases not yet studied experimentally. A point 
of special interest is the closest approach of the Surface of Dispersion to the Laue point, i.e. the point 
in reciprocal space which represents the three-ray field according to the primitive kinematical theory. 
This approach determines the extent to which absorption is reduced in the corresponding wave field 
and has therefore a direct bearing on the Borrmann effect. It is shown that for some cases of two 
simultaneous reflections the surface of dispersion gets much closer to the Laue point than for the reflec- 
tions occurring singly or in pairs; this explains the 'double Borrmann effect' and is discussed numerically 
for the simultaneous reflections (111/liD in germanium. 

1. Introduction 

The present paper can be regarded as the continuation 
of a series of papers by the senior author (Ewald, 1912, 
1916, 1917, 1932, 1937) on the theme: Foundations of  
Crystal Optics. The first three papers are based on the 
simplest model of a crystal which expresses its internal 
periodicity and the mode of interaction between light 
and matter, namely a lattice arrangement of identical, 
isotropic, point resonators or dipoles. In the 1937 paper 
this model was extended to a lattice repetition of a 
base formed by an unspecified number and arrange- 
ment of dipoles. This implied the introduction of the 
structure amplitude, and allowed the transition to be 
made to a continuous distribution of the scattering 
power within the cell, thereby getting rid of the assump- 
tion of point atoms; by a limiting process it also led 
to the same assumption as that used by M. yon Laue in 
his reformulation of the dynamical theory, namely that 
of a continuous dielectric medium (Laue, 1931, 1960). 
In those papers which dealt with X-rays the general 
ease was discussed of an X-optical field consisting of 
n coupled plane waves being propagated in the crystal. 
The details of these waves, i.e. the exact lengths and 
directions of their wave vectors K~, and the relative 
amplitudes of their electric and magnetic field vectors 
are determined by a single point in Fourier space, the 
Tiepoint T, and the condition of self-consistency re- 
quires that T lie on a surface in Fourier space, the 
Surface of  Dispersion (SurfDisp) D = 0; only then will 
the wave field created by the emission of spherical wave- 
lets by each dipole sustain the dipole oscillations. D 
itself can be shown to be a surface of 2n sheets. 

With the determination of D the problem of the 
propagation of an X-optical field in the interior of an 
unbounded crystal is solved in principle. Moreover, in 
the case of a half-crystal, i.e. one limited to the lower 
half space z>  0, the SurfDisp also provides a direct 
method for relating the field inside the crystal with that 
outside, which latter includes the incident plane wave. 
This leads to relations, generalized Fresnel reflection 
and refraction formulae, which lend themselves to ex- 
perimental corroboration. 

Although the theory has been in existence for a long 
time, a strong stimulation for a detailed discussion of 
simultaneous reflections on several sets of planes has 
arisen only recently through the experiments on nearly 
perfect crystals, in particular by the discovery of the 
enhanced Borrmann effect (Borrmann & Hartwig, 
1965). The case of a single reflection, i.e. the co-exis- 
tence of only two rays in the crystal, was easy to derive 
for the crystal with base, and the result, as far as it 
affected the reflected intensity, was used in an early 
paper (Ewald, 1925). This theory also applies to the 
simple Borrmann effect. However, for an optical field 
of three strong rays, a geometrical hurdle has to be 
overcome first, and next the difficulty of discussing the 
equation for the SurfDisp, which is of the sixth order. 

In part I (the present paper) the geometry is dealt 
with satisfactorily, and the equation D- -0  is discussed 
in general terms as far as we succeeded. After that, 
the discussion is restricted towards finding the nearest 
approach of D to the Laue point La (defined in § 4). 
Finally this discussion is even further specialized to the 
ease of Si and Ge crystals with their simple structure 
amplitudes obtained by assuming non-absorbing point 
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atoms. Emphasis has been laid on keeping the discus- 
sion as general as possible within each of the restric- 
tions, so that guidance might be gained for cases of 
interest to the experimentalist. 

In part II (the paper immediately following this one), 
two modifications are introduced in the crystal model, 
both necessary for a quantitative comparison of theory 
and experiment: the non-absorbing point resonators 
are replaced by absorbing atoms of finite size. This 
implies introduction of an atomic scattering factor 
which is complex and whose real and imaginary parts 
are both functions of the scattering angle or order. 
The dynamical theory has been carried through for 
absorbing media in general already by Waller (1925) 
and discussed for the two-ray case by Prins (1930) and 
by many later authors (e.g. Zachariasen, 1945; Hirsch, 
1952; Schwarz & Rogosa, 1954; Laue, 1960 book § 33). 
Most of these authors have been using the dynamical 
theory in its continuum form introduced by Laue 
(1931). We shall here follow the original idea of dif- 
fraction by discrete atoms which perhaps keeps the 
treatment in closer contact with crystal structure, 
though differing from the Laue form only in the stage 
when Fourier development sets in. 

While this publication was being prepared, several 
papers on the three-ray case appeared (Hildebrandt, 
1966; Penning, 1967; Saccocio & Zajac, 1965). In these 
papers a greater readiness is shown to resort to com- 
puter calculation of special cases for which experi- 
mental results are available. With the ease of computer 
calculation, once the programming has been done, it is 
possible to explore the possibilities of constructing 
interesting conditions by experimental mathematics. 
Still, we hope that the survey contained in a theoretical 
treatment, even if limited, may be found useful. 

Finally, as predecessors of this paper, the theoretical 
discussions of the three-ray SurfDisp by Lamla (1939), 
Fues (1938, 1939) and Kambe (1957) should be men- 
tioned. The SurfDisp for three co-planar rays was dis- 
cussed and illustrated by Mayer (1928) for the simple 
dipole lattice. Saccocio & Zajac restricted their discus- 
sion to some fully symmetrical cases in germanium and 
silicon crystals. 

2. Plan of this paper 

For the general relation between the SurfDisp and the 
Borrmann effect the reader is referred to the papers 
by Ewald (1958, 1965); in these it is shown that the 
closer the tiepoint T of an X-optical field approaches 
the Laue point L a  (defined in § 4), the more efficient 
the crystal becomes in converting dipole amplitude into 
field amplitude. Therefore the smaller the distance be- 
tween these points is, the less dipole amplitude is re- 
quired for producing field values in the interior of the 
crystal which balance the impressed field of the inci- 
dent wave. The absorption, being proportional to the 
dipole amplitude, therefore diminishes for such fields 
against its normal value, and these fields are, in a thick 
crystal, the surviving ones. Those fields which are re- 

presented by tiepoints on the sheets of the SurfDisp 
at greater distance from La,  are absorbed more strongly 
than normal because a large amount of dipole ampli- 
tude is needed to create them. 

A first difficulty in discussing the three-ray case is 
the purely geometrical one of finding one's bearings in 
this essentially three-dimensional problem. The reader 
will find the next four sections devoted to the vector 
algebra required for establishing suitable reference 
systems and for relating them. Once this is done, the 
application of the theory as outlined in the 1937 paper 
is straightforward up to the point of writing down the 
equation of the surface of dispersion. Since, for three 
rays, this is of the sixth degree, a general discussion 
presents difficulties. The asymptotic properties can 
easily be found, but the exploration of the branching 
of the sheets of the surface near its centre has not been 
carried through. The papers by Fues and by Kambe, 
mentioned earlier, give a partial answer to what is 
happening. 

The discussion has therefore been cut down to a dis- 
cussion of the three-ray case in germanium crystals. 
This presents a simplification because (i) the crystal is 
cubic and the geometry depends only on a single par- 
ameter /3=2/a ,  so that results are obtained for any 
wavelength; and (ii) the structure factor in Ge is limited 
to three values, and the few combinations that can 
occur in the three-ray case can easily be discussed sep- 
arately. 

3. Nomenclature and orders of magnitude 

The crystal is described by axes ai, and atoms of sorts s 
with polarizabilities as at positions x s in each cell. The 
reciprocal axes to the at are b~; both systems are as- 
sumed, for convenience, to be right-handed ones. The 
volume of the crystal cell is va, and the mean polar- 
izability is A =(,U, o~s)/va. If we consider the electrons 

S 

as free, o ~ s = -  Ns(eZ/m)/co 2, and the optical density of 
the medium is, according to the Drude-Lorentz optical 
theory of the refractive index, 

47~ 
/z 2 - 1  = - - -  X Ns(eZ/m)/co z 

Va 

1 N 
- -  ( e 2 / m c 2 ) A 2 = A .  (1) 

7z /)a 

eE/mc2=2.818  x 10 -13 cm is the classical radius of the 
electron and N = Z  Ns the total number of electrons 
in the cell. The minus sign implies that the X-ray cyclic 
frequency 09 = 27~v =2~z(c/),0) lies beyond all proper fre- 
quencies of the atoms. If this is not fulfilled for some 
of the K- or L-shell electrons, it can easily be corrected 
for; in general, however, the crystal is the optically 
rarer medium compared with vacuum and the wave- 
length 2 in the crystal is greater than 20, the wavelength 
in empty space. A is a dimensionless number, which 
for the ordinarily used near-perfect crystals (like calcite, 
diamond, germanium) and X-rays (like Cu or Mo Kc 0 
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is of the order of 10-5-10 .6 . Since the coupling of the 
simultaneously existing rays produces deformations of 
the surfaces of dispersion of this same magnitude, these 
will be measured in multiples of A. 

4. Definition of Lorentz and Laue Points 

Let the three coexisting waves be represented in 
Fourier space by their wave-vectors K1,KE, K3 which 
issue from the tiepoint T to the origin O of the recip- 
rocal lattice and to its lattice points h2 and h3, respec- 
tively*. The lengths of these vectors must closely ap- 
proach [KI =/~k0, where ko= 1/20, is the wave number 
for propagation in empty space at frequency v. We 
define as the Lorentz point Lo the point in Fourier 
space which is at the exact distance ]KI from the three 
points O, h2 and ha. It would be the only tiepoint for 
which the three rays could coexist without the relaxing 
influence of their mutual coupling and it is, for this 
reason, the central point for the splitting up of the 
surface of dispersion. We shall use the Lorentz point 
Lo as the origin of a coordinate system in which to 
describe this surface and use the vectors K, issuing from 
Lo as the axial system for this description. 

We also shall have to use the Laue point La which 
lies at distance k0 from the three lattice points O, liE 
and h3; that is, since ko > K, La lies beyond Lo on the 
normal to the plane supported by the vectors h2 and 
]13. 

We begin the geometrical orientation by expressing 
Lo and La in terms of the vectors h2 and h3 and the 
wave constants K ( - IKI)  and ko. 

5. Expressions for the Lorentz and Laue points 

For handling the multiple vector products, the bracket 
notation - ()  for the scalar, [ ] for the vector product 

* In order  to avoid irritating minus signs, K1,KE, K3 should 
form a r ight-handed system. 

La 

Lo 

g 

0 

Fig. 1. Four ie r  space. Reciprocal  lattice points 0, hE, h3, wave- 
vectors K1, K2, K3, Lorentz  and  Laue points.  In the drawing,  

the t iepoint  coincides with Lo. 

- is more convenient than the dot and x notations, 
and will be adopted. The Lorentz point is the centre 
of the sphere of radius K which passes through O, ha 
and h3. It lies on the intersection of the two planes 
which have equal distance from O and ha, and O and 
h3, respectively, and whose equations are, therefore 

( X h E )  = 1 2 ~h 2 and ( x h 3 ) - - ½ h  2 . 

We first seek a point x' in the hE, ha plane satisfying 
these conditions, (i.e. the centre of the circle circum- 
scribed about the triangle O, hE, h3), by putting x = x ' =  
~hz-bf lh3 ,  and we easily find 

1 
x ' =  2ihE-h3] 2 {h2{h22-(hEh3)}hz+h2{h2-(hzha)}h3}. (2) 

Next we add to this a vector of suitable length along 
the normal to the plane Ohzh3, i.e. we put for the 
Lorentz point 

X = X' --  v[hzh3] , 

where v is determined by the condition x 2 = K 2. Since 
the two parts of x are at right angles, x E is the sum 
of their squares. It is easily found that 

2 2 X'2 = hEh3(h E - ha)Z/401Eh3] 2 

and therefore 

rE= {4[hzha]ZKZ-- hEhE(hz - ha)Z}/4[hzh3] 4 . 

Thus, the position of  the Lorentz point is at 

1 
Lo=  2[h-2h3] ~ {h~{hE-(hzha)}hz + hE{hE-(hah2)}h 3 

- V4[hEh3]EKE-hEhE(hE-h3) 2 [hEh3]}. (3) 

The position of the Laue point La is obtained by sub- 
stituting the vacuum wave constant ko for K. Its dis- 
tance from Lo is obtained by differentiating Lo with 
respect to K 2 and multiplying with 

= --KZ(l.tZ-- 1)//~2 = - A k  2 . 
Since 

dLo 
d K  2 

we obtain 

[h2h3] 

[/4[h2h3 ]EK 2 _ h22h2(h2 _ ha )z'  

~ - - _  . _  

L a -  Lo . . . .  Ak2 
V ~ E h - ~ / ~  =h22h32ihE_ h3) E [hEh3]. 

(4) 

This expression is a length in Fourier space of order 
A; since A is negative, La lies farther away from the 
OhEh3) plane than Lo. 

6. The reference systems 
attached to the Lorentz point 

The vectors - Lo, - Lo + hE, - Lo + h3, each of length 
K, would be the wave vectors of the coexisting waves 
if no coupling between the waves took place. We use 
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unit vectors Sl,S2,S 3 in their directions as the axes of 
a reference system with origin at Lo in order to de- 
scribe the surface of dispersion. We also need the recip- 
rocal system tl, t2, t3 (see Fig. 2). 

Using the abbreviation w for the square root in Lo 
we have 

W = ¢4-K-2~12113i -2 -h22h~-(h2 - -  h3)  2 (5) 

1 
Lo = 2[h2h312 {h ]{h 2 - (h2h3) }h2 

+ h2{h2 - (h2h3)}h3 - w[h2h3] } (5') 

- Lo - Lo + h2 - Lo + h3 
$ 1 - -  ~ - ,  S2 = ~ . . . . . .  , S3 . . . . .  ~r(-- " (6) 

The volume supported by the s-axes is 

/3 8 = ($1[S2S3]) = K-3( - L o [ -  Lo + h2, -- Lo + ha]) 
W 

= K - a ( -  Lo[hEh3]) = K -3 --  [hEh3] 2 = w/2K 3 (7) 
2[hEh312 

Since h2, h3 and K are of the same order of magnitude, 
it is often convenient to introduce the dimensionless 

~12 = hE/K 113 = ha/K (8) 

which according to Bragg's law may be interpreted as 
2 sin 02 and 2 sin 03 respectively, where 02 and 03 are 
the Bragg angles belonging to the diffraction of orders 
hE and ha (including refraction). We have then 

w=  K3 V-4[-~a~--~2r/](r/2 - r/a) 2 (9) 
and 

Vs = ½1/4[r/2r/3] 2 - r/22r/](r/2- t/3) ~ . (9') 

For  the reciprocal system we find 

t3=[SlS2]/Vs= [-- L°'h2]/K2vs ! 

t2=[S3Sl]/vs= [L°'h3]/g2vs ! (10) 

tl = [S2S3]/Vs = ([-- LO, h3 - h2] + [h2h3]}/g2vs 
= - t2 - t3 + ~lEh3]/KEvs. 

From the last equation we see that the vector 

tlWtE+ta=~nEh3]/K2vs = _1 [112113] (1 1) 
Vs 

is directed along the normal to the plane of h2 and h3, 
i.e. lies in the direction La-->Lo. 

The explicit expressions for the t-vectors are ob- 
tained by simple algebra as 

1 1 
t l -  2Vs [r/~2r/312 {[112113](/12/73)(/']2--/13) 2 -- 2Vs[[112II3](112-- 113)]) 

1 {[ahSl3] {r/2r/2 _ r/i(r/2r/3 ) } 
t 2 -  2Vs[/72---------~3] 2 | ( 1 2 )  

1 - -  2Vs[[112113]II3]} I 
t 3 -  2 V s  [r/2r/312 {[n2n31(~]2/']2 --  ~2(/']2~]3) } ] 

+ 2v~[[ng13]n2]}. 

The relation between the reference systems is shown 
in Fig. 2. 

The Laue point, as seen in the t-system, lies at 

L a - L o  = Ak2 . . . .  [h2h3] 
t / 4[ h2~3j-2K 2:_-h2h]( h2 , h3)2 

=½KA(1/iz2)(tl+t2+t3); (13) 

here/z can be replaced by 1, and it is to be remembered 
that A is negative. We call the direction Lo-+La the 
Principal Axis of the three-ray case and define its pos- 
itive sense as -[h2h3]. 

As seen from O, the position of a tiepoint T can be 
described as 

T = Lo + ½KAy ; (14) 

here v is a dimensionless vector of unit order of mag- 
nitude indicating the displacement of T as seen from 
Lo. The Laue point is given by 

V L a = t l  + t 2 + t 3  • (15) 

We are interested in expressing how a displacement v 
affects the resonance numbers 

K2-k~  /./2-1 A 

r,= K,2-ko-2 = -([~?/ko)~j_l = (Ki/ko)~, 1 (16) 

and their reciprocals 

1/ri = (1/A){(K,/ko) 2-1  } .  
Putting 

K~ = K(s~- ½Av), (17) 
we have, neglecting terms in (Av) 2, 

1 - 1/ri =/t  2(siv). (18) 

If  we decompose v into components along the t-axes, 
i.e. 

v = ziti = (s~v)t~ 

(19) 

we can write, replacing/z a by 1, 

1 - 1 / r ,  = r , ,  

and this will be a convenient expression in the next 
section. 

tl ~ t2 

O ~  h2 

h3 

Fig. 2. Same as Fig. 1, but also showing the reference system 
tl, t2, t3 reciprocal to the unit vectors along the three rays. 
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7. The dynamical equations 

The assumption is made that the dipole moments of 
the various sorts (s) of atoms correspond to the prop- 
agation of a plane wave of wave-vector KI: 

p~=pS ,  exp(j(K1X~)}, e x p { - . ] v t }  . (20) 

Here XI = xt + x 8 is the position of the atom of sort s 
in the lth (ll, 12,/3) cell, and 

j=  2.i= 2-1?" 1. 

Leaving out the time factor, common to all moments 
and fields, there follows the Hertz potential of the 
optical field in the unbounded crystal 

Z(x) =Z" Z" ps exp(j(Klxs)} exp(j(KlXz)) 
s l 

exp{ jk° lx -X~l l }  (21) 
4~rlx-X~l 

exp(j  (Khx)} (22) 
=lva Zh Sn 4~2(Kh2_ko2) . 

The second of these expressions is the Fourier trans- 
form of the first; in it, Va is the volume of the crystal 
cell, 

Kh = K1 + h = wave-vector of the 
hth (=  hi, h2,h3) wave component (22') 

and 

Sh = Z' pS exp{ -j(hxs)} = Structure Amp l i t ude .  (22") 
s 

In (22) the summation goes formally over all points h 
of the reciprocal lattice, but is, for the three-ray case, 
restricted to the three exceedingly large terms 1,2,3 
with h=0 ,  h = h z  and h=h3,  respectively. The deriva- 
tion of this Fourier transformation has been given pre- 
viously (Ewald, 1932) as well as the field expression 
obtained by differentiation: 

D(x)= 1 Z' [Kh[ShKh]] 
Va h K2-k2o  exp{j(Knx)). (23) 

rhe double vector product in the numerator is equal 
to K 2 times that part of Sh which is transverse to Kh, 
for which we write Sn±Kh. In the numerator of the 
three large terms to which the sum is restricted, we 
replace K 2 by ko 2. The vector so obtained we consider 
to be the electric vector acting on the dipoles:* 

ko 
E(x)= 1 ~r Sh±Kh --Z ..... 2 exp(j(Khx)}. (23') 

va K h - k  o 

By introducing the polarizability, we next obtain the 
relation between dipole moment and field at the site 
of any dipole: 

* The reason for the change of name of the field vector and 
for the replacement of Kn by k0 is this: the coefficients in the 
infinite sum(23) are asymptotically of order 1. D(x) therefore 
has the character of a delta function, or a sum of such, whereas 
the sum in (23') converges smoothly. Actually, the latter sum 
is equal to D(x) diminished by the electrostatic field of the 
instantaneous dipole distribution. This comes close to the 
true field of excitation, el. Lorentz E= D-P.)  

Z Sh±Kh ---2 - 2 P~=psexp(j(KxXJ)}= va h K h - k o  

exp{j(KhX[)}. (24) 

By multiplying both sides by exp{-j(h'xS)} and sum- 
ming over s, the structure amplitude, Sh, is formed on 
the left-hand side, whereas on the right the Fourier 
coefficient of the polarizability distribution in the cell 
appears: 

A ~ , - h = Z  C~S e x p { - j ( h ' - h , x s ) }  ; (25) 
s V a  

we thus obtain 

k°2 (26) 
Sh, = Z, Ah' -hShxKh ~2 . . . .  2" 

h K h - k o  

This system of linear homogeneous equations for the 
structure amplitudes has to be fulfilled (in the case of 
n rays) if n rays are to coexist. It can be fulfilled by 
adjusting the resonance factors 

by suitable choice of the tiepoint T, since the position 
of T determines the difference of length of each wave 
vector Kh of the wave field and the wave constant in 
free space. The permissible points T form the surface 
of dispersion. 

As the equations for S stand, the small coefficients 
Ah ' -h  (of order 10 -6) have to be compensated by the 
smallness of the resonance denominators. It is conve- 
nient to measure Ah'-h against the optical density A, 
so that both the first and the last factors on the right 
hand side of (26) are of unit order of magnitude. We 
introduce the coupling numbers,  

Z" ~s exp{_ j (h ,_  h,xs)} 
Ah ' -h  s 

~ ' - h  = ~  . . . . . .  X a s ; ~nn= 1 (27) 
$ 

and the resonance numbers  

A k  2 ~ 2 _ 1 ) k ~  K 2 - k  2 (28) 

K h -  ko K~ - k2o 

and write the dynamical equations in their final form: 

Sh" : S O~h'--hrhShxKh . (29) 
h 

On the right-hand side only the components of Sn 
normal to Kn occur, which are the ones producing the 
amplitude of the hth wave of the wave-field; the left- 
hand side, however, leaves the existence of a longitu- 
dinal component of the structure amplitudes open. 
Calling Tn the transverse components, we write, with 
undetermined factors 2, 

Sn = Tn + 2nsn (30) 

by substituting in sufficient approximation sn for the 
actual direction of the wave-vectoi Kn. 

The dynamical equations then become 

S ( c ~ , - n r n -  Jh'h)Tn = 2n,sn, (31) 
h 
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or, explicitly, in the case of three rays 1, 2, and 3: 

(r~ - 1)T~ + t~12r2T2 + cq3r3T3 = ,~IS1 / 
~21r1T1+ ( r 2 -  1)T2+ o~23r3T3 =/~2s2 ~ (31') 
~31rlT1 + ~32r2T2 + (r3 - 1)T3 = 23s3 . J 

8. Conditions of solution of the dynamical equations 

Two cases have to be distinguished in solving the above 
equations: either a solution is possible with all 2~s~ equal 
to zero, or not. 

(1) In the first case we can take T3 from one equa- 
tion and insert the value in the other two equations; 
these then become homogeneous linear equations be- 
tween T1 and T2, showing that T~ and T2 are parallel; 
then T3, being a linear combination of T~ and T2, is 
of the same direction. But since each of the vectors 
is normal to the corresponding direction of the ray, 
there must exist a common transverse direction of the 
three rays, i.e. the rays must  be coplanar. The equations 

From these expressions we obtain a determination of 
the unknowns 2~, i.e. the longitudinal components of 
the structure amplitudes, by forming the scalar pro- 
ducts (T~s0 which are zero; using the abbreviations 
(s~s~)=s~, su=  1, we have 

21 ~12r2 ~13r3 
,~2s21 rE-- 1 ~23r3 = 0 ; 
~3S31 ~x32r 2 r 3 - 1  
r~ - 1 ;hs12 ~3r3 
t~21r1 ,~2 ~23r3 = 0 ; 
~31rl /'~3S32 r 3 -  1 

r ~ -  1 ~12r2 ,~1S13 
~21rx r2--1 ,~2S23 = 0.  (34) 

0~31rl ~32r2 ,~3 

These three linear homogeneous equations for 21, 22, 23 
have a solution provided the determinant of the coef- 
ficients of 2, vanishes, i.e. 

- -  S12 

s13 

r2-- 1 ~23r3 
t~32r 2 r 3 -- 1 

~2xrl ~23r3 
C~31rl r3-- 1 

c~2:r2 r ~ -  1 
o~31rl 0~32r2 

tx12r2 ~13r3 
s21 

t~a2r2 r 3 -  1 

r l--  1 tx13r 3 
~31rl r 3 -  1 

_S23 [ r l - -  1 tx12r 2 
I tx31rl tx32r2 

S31 

-- $32 

t~12r2 t~13r3 I 
rE-- 1 ~23r3 

r l--  1 ~13r3 I 

I ~21rl ~23r3 

r l -  1 e12r2 
~21rl r 2 - 1  

= 0 .  (3.5) 

thus reduce to scalar equations for the magnitudes of 
T1,T2,T3, and the vanishing of the determinant 

( r l -  1) ~12r 2 o~13r 3 ! 
A = !  oc21rl (r2--1) 0c23r3 I (32) 

• ~31rl ~32r2 (r3-- l)  

formed from the coefficients of the T~ gives the con- 
dition of compatibility of the homogeneous equations, 
or, geometrically, the surface of dispersion for the co- 
planar case. Since this case was thoroughly discussed 
by Georg Mayer in 1927 we may here only refer to 
his paper, all the more so as in the recent experiments 
the three rays are not coplanar. 

(2) If the determinant A and at least one of the right 
hand sides in (31') do not vanish, the equations can be 
solved for T1, T2, T3 yielding 

A . T1 ~ 

A .T 2 

A . T 3 =  

• ~1S1 ~12r2 ct13r3 
,~2s2 r 2 - 1  ~23r3 
,~3s3 t~32r 2 r 3 -- 1 

r l -  1 AlSx tzl3r3 

t~21r 1 /~2s2 ~23r3 
tZalrl 1~3s3 r 3 -  1 

r l -  10ClEr 2 ~.1S1 
0c21rl r2-- 1 /~2S2 
~31rl 0~32r2 ~-3S3 

(33) 

Since, by their definition, none of the r~ can vanish 
except at infinite distance from the Lorentz point, a 
factor (rlrzr3) z may be taken out, and, using (19) the 
equation of the SurfDisp may be written in terms of 
the components 1-~ of the displacement v as 

D =  - s12  

s13 

or, expanded: 

1-2 
0C32 

0C21 
~31 

CX21 
0C31 

1-30C23]--$21]~120~13]~32 1-3 $31 ICZ12(X1311-2 0C23 

~23 I 11-10C13 I __S23 ]1-10~13 l 
1-3 0~31 1-3 t~21 ~23 

2"2 I __S23 2"1 iX12[ [1-I t~12[ 
0C32 (X31 ~32 (X21 T2 

= 0  (36) 

O = (1-12- [cq2[z)(r23-1c~2312)(r31-1~3d 2) 

- s123{("321-1 - 0~3112)(0c131-2 - 0~1223)(0c21 l"3 - t~2331) 

dr- , ) __ [S122 {(1-12 --IOq212)(1-31X12- ~1332) 

(1-3~21- 0C2331)} -+- (-~ + 0 ] - ~  O. (37) 

Here ~ indicates cyclic replacement of the indices, and 
• reversal of the order of indices. If the scattering coef- 
ficients of the atoms are real, the operation • amounts 
to adding the conjugate complex to the previous product. 
In this and the following the abbreviations are used: 



P. P. E W A L D  A N D  Y. HI~,NO 11 

St/~ : (SiS/c) S123 : (S 1 S2)($2S3)(S3Sl) 

2-12 ~ 2"1 • 2-2 T123 = 2-12-22-3 

t~1223 ~ ~120C23 ~123 ~ ~120C23~31 

0C123 + 0C321 = 2 C  (38) 

While coefficients such as eta2 are the direct coupling 
coefficients of rays 1 and 2, a product such as 0c1223 
can be interpreted as causing a detour coupling of rays 
1 and 3 via ray 2; and 0c123 represents a self-coupling 
of ray 1 via its coupling to 2, that of 2 to 3, and finally 
that of 3 to 1, like a kind of self-inductance of the ray. 
C is the real part of this self-coupling. 

It is often convenient to express D according to de- 
creasing orders of the 2- products. This gives the equa- 
tion of the SurfDisp in the form 

D =  2-323- 2-a23 {[2-1 [~2312(1 -I- $23) -Jr- ~ q- ~ ]}  
-- 2-1232C(s123 -- ~ v' S2k) 
-I- 2S123{[2-12]0q33212 q- ~ -k- r'-~] ) q- [T121~133212(1 - $22 ) 

~t_ {~  + O ]  -~- [2-2[~2314S223 .qt_ O ~- O ]  

- 2C[rll~z31~(s~3 + s~3) + © + ©] 
+ 4C2s~23 - 1~x2312~ = 0 ,  (39) 

where 
v~= 1 2 2 2 • (40) q- 2S123 - -  S12 - -  S23 - -  S31 , 

vs is the volume supported by the three unit vectors 
in the directions of the rays, s~. 

9. Properties-of the surface of dispersion 

(9.1) Asymptotic form of the surface 
Let one of the 2-f, for instance 2-3, be very much larger 

than the other two. The terms containing the highest 
power in z3, namely 2-~, are, from (39) 

• ]{(2-12-2)z- 2-12-e1~1212(1 +s22) +S2alCq214}. (41) 

The vanishing of the curly bracket yields a quadratic 
equation for 2-12-2 whose solutions are 

= ,  flea212 (41') 
2-12-2 [icq212s22. 

This represents, for the two cases of polarization, the 
two hyperbolic cylinders (along t3) which form the four 
sheets of the SurfDisp when only rays 1 and 2 survive, 
which is obviously the case if we recede far enough 
from the Lorentz point in the direction t3, i.e. normal 
to the plane of sl and S 2. 

(9.2) Permutational properties 
The SurfDisp is, as is to be expected, invariant 

against a cyclic permutation of the assignment of the 
indices 1,2, 3 to the three rays. This is seen in (39) from 
the fact that the single parts are formed by cyclic per- 
mutation and that the coefficients occurring singly, like 
1e12312, 2C, s123 and ~,  remain unchanged by this opera- 
tion. In a non-cyclic permutation the sense of the pos- 

itive direction along the principal axis is reversed; the 
construction of the SurfDisp would take place on the 
other side of the plane of the vectors hi and h2, but 
otherwise the surface is not changed. 

(9.3) Phase relations 
From (39) we see that the phases of the complex 

coupling coefficients c~lk= I~e[ exp(i~0~e) appear in the 
expression of D only through the terms with factor 

2 C =  0~123 --[- ~321 = [t~123[ • 2 cos ~0, 
where 

~0 = ~012 + tP23 + ~031 

is the sum of the phases of ~12, ~23 and c~31. Thus the 
phases do not modify the SurfDisp individually. In 
other words, provided the phases of two coupling coef- 
ficients (structure amplitudes) are known, that of a 
third may be determined from the geometry of the 
SurfDisp at simultaneous reflection. 

(9.4) Centrosymmetry 
The terms in odd powers of z~ are both multiplied 

by 2C. Therefore the SurfDisp is centrosymmetric 
about the Lorentz point if, and only if, C = 0 ;  this is 
the case if (i) one or two cqk = 0 ;  or (ii) ~0 = _+ n/2. 

(9.5) Consequences of cqz3 = 0 
If at least one of the coupling coefficients vanishes, 

then the constant terms in (39) are zero and the lowest 
order in z-products is the second. Therefore the Lo- 
rentz point, where all z~ = 0, is at least a double point 
of the SurfDisp, i.e. at least two of the six sheets pass 
through it. By (9.4) the Lorentz point is also a centre of 
symmetry of the SurfDisp. 

(9.6) Principal points when Cqz3=0 
Let us call the intersections of the principal direc- 

tion with the Surf Disp the principalpoints. Then, when- 
ever one of the coupling coefficients vanishes, say 
C¢a3=0, all six principal points are real. By putting 
~'1 = 2-2 = 2-3 = 2- in (39), this equation reduces to 

D = ' r 2 1 2 - 4 -  2-2{I} + { I I } l  = 0 ,  ( 4 2 )  
with 

{I}= {[e1212(1 + s22)+ 1e1312(1 + s23)} 

{II}= {1~311212(1 + 2s123-sh)+ I~l~l"sh + l~131"sh} • 
Equating the biquadratic expression in the square 
bracket of the first line to zero gives two real values 
of 2-z because the discriminant is positive: 

{I }2 _ 4{II } = [[exz[2(1 - s22) -1~,312(1 - s23)] z 

q-4[0c211312[Sz3--S21S1312> 0 .  (43) 

The principal points are given by the positive and 
negative roots of the solutions of (42), which are 

2-2=0 ; z~: = ½{1~1212(1 + s22) + 10q312(1 + s23)} 

_+ ½V[~]Y(1 "s22)-1~1312(1 --s23)]2-1-4[~211-312-[$23 -- $21Sli] 2 
(44) 
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(9.7) Sections of  the SurfDisp in the case 0~23 = 0 

(A) Section with the (t2, t3)-plane 
With zx = 0 there remains 

2 4 2  2 4 2  D--'t'zv31~zzl1312{2s123 + 1 - s2s}+  z21~z131 s13q-'c3[oq2[ s12 
= 0  (45 )  

This is a homogeneous equation of the second order. 
We put 

"r3[~1212S12 - u  (46) 
TzlOq312s13 

and obtain for u 

1 
U-- - -  {--(2S123+ 1--S~3) 

2SlzS13 
+ V(1-s~3)[1-(s23-2s,ZS~3)21}. (47) 

This section is always real and consists of a pair of 
straight lines passing through Lo; for it is easily seen 
that the square bracket under the root is positive. In- 
deed, the expression whose square is to be taken is 
written with unit vectors as 

S23-- 2S12S13 ~--'($3. (S2-- 2SlS12)) = (S3 • S ' ) ,  

and, as s' is also a unit vector, this expression is the 
cosine of an angle and its square < 1. 

(B) Section in the (q, t3)-plane 
With z2 = 0 

O = z]l~a214s~2 = 0 .  (48) 

The intersection is v2= z3 = 0, i.e. the tx axis. 

(C) Section in the plane (tx, T), where T = t 3 - t2 
The vector T is normal to tl only if s 2 and s3 are 

related by a symmetry plane containing s~. In order to 
remain in the plane (h,T), we have to put z2= - -z3  in 
D = 0. This gives the equation 

D=z2(( - 'qv3 + ½11~1312(1 + s~3) 
-Icq212(1 +sa22)])2-d2}=0 (49) 

where 

dZ=¼{l~x312(1-s~3)-I~xzlZ(1-s~2)}2+ l~a21312v~ (49') 

is positive. 
The section consists of the T axis, counting double, 

and of two pairs of hyperbolic curves. The condition 
of the vanishing of the curly bracket in (49) can be 
written 

( -  zxz3 + a + d ) ( -  ~1T3 + a -  d) = 0 ,  (50) 

where a =½[---] in (49) and can be positive or negative, 
and greater or smaller in absolute value than d. De- 
pending on the specific values, the intersections of D = 0 
with the (tl, T) plane lie as shown schematically in 
Fig. 3; the hyperbolae represented by the second factor 
in (50) are shown dotted. 

(9.8) Collapsed base 
If  all the basis vectors are put equal to zero, the 

total scattering power of the base is concentrated at 

the corners of the cells and the diffraction is as by a 
lattice of dipoles. The SurfDisp for the case of n strong 
rays has already been derived for this case in the 1917 
paper, and a shorter derivation, using the present 
nomenclature, was given in 1937. The equation in this 
case is 

1 2 1 ( l - R )  27&rk[s~s/c] 2 D= -~. i~ &rkrl(s~[slcsl]) + ~. ik 

+ ( 1 - - R ) 2 = 0  (51) 
with 

R=27 rt . 
i 

The factorials can be omitted by using the convention 
i < k < l; the triple product of the s~ in the first term is 
the volume supported by any three unit vectors of ray 
direction. In the case of three strong rays the first sum 
reduces to a single term. 

Our general expression (35) should reduce to the 
above equation on collapsing the base. This makes all 
~k = 1 and reduces (35) to 

1-R+rl  s12r2 s13r3 

D = , s21rl 1 -- R -~- i" 2 $ 2 3 r 3  = 0 (52) 
s31rl s32r2 1 - R + r 3  , 

which is easily seen to lead to the result (51). 

(9.9) Condition for the Laue point to lie on the SurfDisp 
If La satisfies equation (39), then, by putting all 

z, = 1, we obtain 

1 -[l~z3F(1 +s223) + ~ ] -  2C(s1=3- 27 s,2k) 

+ [l~133z12(2s123 + 1 - s~2) + Oc-~] + [lc~2314s22s + c - ~ ]  

--  2C[[~23[2(s123 + s23) + ~ ]  + 4C2s123 

-1~,u312~=0. (53) 

In the case of a collapsed base, all ai~= 1 and C =  1. 
The condition then becomes, writing X for X 2 S ik,  

a pos  v° > d a posve< d a neg ve l a l < d  a neg ve l a l > d  

a=d a=-d a=O 

""tl t t I I J '~ -  117 .r. ~ " 

Fig.3. Schematic diagrams of sections of ( t l ,  T) plane and 
SurfDisp for various combinations of a and d values 
[equations (49) and (49')]. 
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1 - ( 3  + Z) - 2(8123-  .~Y') -a t- (6s123 --[- 3 - ,~') 

-b ~Z'-- 2(3S123 q- ~ ' )  -b 4S123 -- l~" = 0 ,  

or simply 
1 + 2S123 -- ~v'__ 1)2 = 0 .  (54) 

This condition is fulfilled [see (40)]; thus, for a col- 
lapsed base, the SurfDisp for three rays always con- 
tains the Laue point. 

(9.10) Three orthogonal rays 
This case can best be discussed fol the general (non- 

collapsed) crystal by noting that if all s~e = 0, only the 
first product term of D [equation (37)] survives: 

D(s~=O) 

=(z12-  loq212)(z23- loc2312)(z13- loq312)=o . (55) 

The surface then consists of the three interpenetrating 
but undeformed hyperbolic cylinders fol the three pairs 
of rays, 12, 23, 31. For each of these cylinders the 
electric moment is normal to the plane of the two rays, 
i.e. in the direction of the third. Therefore this moment 
produces no wave travelling in the third direction, and 
that ray is uncoupled. If  the base is collapsed, the Laue- 
point is a triple point of the entire surface. If the crystal 
consists of smooth equidistant sheets of planar mol- 
ecules, and rays 1 and 2 are at 45 ° on either side of 
these planes, then l~x21 will be very nearly 1, and one 
of the (1-2) sheets of the SurfDisp will get very close 
to La. This would, however, happen also without the 
presence of the third ray for properly polarized X-rays, 
and no enhancement of the simple Borrmann effect will 
take place on rotating the crystal about the normal of 
the molecular plane until ray 3 appears. 

10. Silicon and germanium crystals 

As it seems unprofitable to continue with the discus- 
sion of the general case, we now specialize to the case 
of silicon or germanium crystals, since these are the 
most readily available crystals approaching perfection, 
and the coupling coefficients are sufficiently restricted 

4n 4n 4n+2 4n 

1 4n 2 4n+2 3 4n+2 4 4n+1 

4n 4n+2 4n+1 4n+1 o: o 
5 4n-1 6 4n-1 7 4n+1 8 4n-1 

Fig. 4. Possible combina t ions  of  H-values and  coupl ing coef- 
ficients for ge rman ium structure with point  atoms. 

by the structure to lead to important simplifications 
if we neglect atomic factors and absorption. 

(10.1) Structure factors and combinations o f  coupling 
coefficients 

Both crystals are of the diamond type structure and 
have only four values of the relative structure ampli- 
tudes or coupling coefficients. These depend only on 
H =  hx + h2 + h3 and are 

if H =  4n 0~= 1 denoted as 1 ] 
= 4 n + 2  0 0 
= 4 n +  1 exp(-iz~/4)/1/2 _ (56) 

= 4n - 1 exp(br/4)/I/2 + ; 

n can be any integer. It should also be noted that, since 
the structure consists of two interpenetrating face- 
centered cubic lattices, only indices ha, h2, h3 of uniform 
parity occur. 

Ray 1, or (000), is of the form H =  4n and therefore 
the coupling coefficients ~lz and ~13 belong to the same 
class as (~2 and ~3. The remainder (modulo 4) of ~23 
is the difference of the remainders of/-/2 and H3. On 
account of the permutation properties of the rays, the 
diagrams (Fig.4) give a complete survey of the pos- 
sible combinations of H-values (written at the corners 
of the diagrams which correspond to the points O, h2 
and h3 of reciprocal space) and of cq~ values (written 
along the sides of the triangles). Of these diagrams, 
2 and 3 are of no interest here because they show 
one of the rays uncoupled from the other two; it is 
an isolated ray in the sense discussed previously (Ewald, 
1937, p. 13), and the SurfDisp is that of the two coupled 
rays. Cases 4 and 5 have the same coupling coefficients, 
only in different sequence, and need not both be dis- 
cussed. Case 6 with H = ( 0 , 2 , -  1) leads to the same 
SurfDisp as the one with H - ( 0 , 2 ,  + 1); in considering 
ray 1 to be the 'primary' ray, this is the ease of true 
'Umweganregung', whereas on the same assumption 
case 8 represents an Umweganregung only in the sense 
that the two secondary rays are not coupled directly 
but only through the primary ray. 

There remain therefore to be distinguished only 
three cases of interest, characterized (i) by three maxi- 
mum coupling coefficients (e.g. 220/220/040), (ii) two 
equal and one vanishing coefficient as in case 8 (e.g. 
111/1]1/020) and (iii) two conjugate complex and one 
maximum coupling coefficient, as in case 7 (e.g. 
111/]']'1/220). 

For cubic crystals the angles between the rays depend 
only on the ratio of the order vectois to ]K[; introduc- 
ing dimensionless reduced reciprocal axes 

I ~ = b J l g l ( = 2 / a d ,  (57) 
we put 

h~ =~r h~kbe =Kq~ with I!~ =Z" h~kl3e. (57') 
k k 

According to (5), the position of the Lorentz point is, 
in these units, 
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L o = K - - -  
1 { 2 =  

2[,/2~31z {/12(//2-(/'/2/73)}112 -q-//2{//3-(//3/,/2)}1~3 

- } (58) 

and the distance La-Lo according to (13) 

/./2--1 
La<---Lo = K ---~g . . . . .  [~121131/]/4[~/2-~/;12 - ~/~r/~-(q2 - *?3) 2. (59) 

In terms of I1~ we easily obtain, formally or by inspec- 
tion, 

( s l s2 ) - s12=(1  1 2 
-- 2112) ($2S3) ~___ S23 = (1 __ ½(,I]2 -- 113)2). (60)  

(SlS3) =S13 = (1 -- ½1q~) 

Th.e volume vs is given by (9). All geometrical factors 
in the equation for the SurfDisp can now be expressed 
by the indices of the three reflections, and thereby re- 
main valid for all wave-lengths. 

(10.2) Case of  maximum coupling between the rays: 
ct, k= 1, case 1 of  Fig. 4 

Going back to (39), setting all ctl~ = 1, as for a col- 
lapsed base, and all z, = 1., we easily factorize the equa- 
tion for the principal points into 

D=(1.-1)3{(1.+1)3-(l"+ 1)Z's2k-2sa23}=0. (61) 

T= 1, the Laue point, is a threefold root, irrespective 
of the angles between the rays. It is easily seen that 
the third order equation for (1. + 1) cannot have a root 
z > 1; therefore no sheet of the surface intersects above 
the Lauepoint. 

(10.3) Case of  direct' Umweganregung' 
This occurs as case 6 in Fig. 4. Ray 2 is a 'forbidden' 

reflection with no direct coupling to ray 1. But an 
indirect coupling, via ray 3, exists between the first two 
rays. We put 0~a2=0, and, for simplicity, make ~a3 = 
0c23 = O{. The principal points are then given by 

D = 1.2{1. 4 -  vZlcd2(2 + s23 + s23) 
+1~14(2s123+ 1-s22+s~a+s2a)}=O. (62) 

Lo is a double point and centre of symmetry, and the 
other principal points are at +_ z, where 

1.2 = 1~12{1 + ½(s~3 + $223) 
i -;2- " 2--2 ..... 2 ......... + 2¢(S13+$23 ) +4Sa2- -8S123} .  (63) 

There is a simplification if rays 1 and 2 are at right 
angles to one another, namely 1.2= 1 or 1 +s23+s23; 
this requires a special ratio of (a/2). 

(10.4) Case of  indirect' Umweganregung' 
This is case 8 of the list. Ray 1 is coupled directly 

to 2 and 3, but the latter are only detour-coupled via 1. 
It is the case on which the double Borrmann effect was 
first studied (Borrmann & Hartwig, 1965) with 

1 = 000, 2 = 111, 3 = 1 i 1, 2-3 = 020 ('forbidden'). 
The equation for the SurfDisp reduces to 

D = z1223 - z123½(1.2(1 + s123) + 1.3(1 + s22)) 
+ ¼(z2s13 + r3s12) = 0.  (64) +¼~.21.3(1 +2S123__S2s) 2 2 2 2 

All attempts to factorize D have been unsuccessful. The 
principal points are determined by 

+ S12-{- S13 ) 1.2{1.4_ ½1.2(2 2 2 

2&23 + S12 + $13 -- +¼(1 + 2 2 s~3)}=0 (65) 

The first factor shows that Lo counts double; the other 
roots follow from 

1.2= ¼{2 + s~2 + s123 
._. 

2 2-s22s) }. (66) + 1/(2-+-s22-~2i)i--4(1 + 2s123 + s12 + S13 

If there is symmetry, as in the case specified above, 
namely slz=Sa3=S, Sz3=S ', then four of the principal 
points follow from 

1 + s' (67) 

and the equation for the intersection of the SurfDisp 
with the symmetry plane can be factorized" 

1.2{1.11.-- ½(1 +2sZ--s')}{1.11.--½(1 +s')} = 0 ,  (68) 

where 1. = z2 = 1.3. The intersection consists of the tl axis 
(z=0) counting double, and two hyperbolae, both of 
which lie in those quadrants of the symmetry plane 
in which v and Zl have the same sign [½(1 + 2 s 2 - s  ') is 
always positive]. Which of the values (60) gives the 
intersection closest to La, i.e. r , =  1, depends on the 
angles SaS2=SlS3 and s2s3. The latter angle can vary 
from near zero to a maximum of 2sis2 .Therefore 
s' = cos(s2s3) > 2s 2 -1 ,  or s' = 2s 2 -1  +p, where p is pos- 
itive and < 2(1-s2). The roots are then 

1.2 = 1 - ½p and T 2 = s 2 + ½p, 

and either may be the closer one to 1. 
Fig. 5 illustrates the topmost sheet of the SurfDisp 

in the symmetrical three-ray case. In the lower part 
of this drawing in reciprocal space the directions of 
the three rays are shown as they would be if there was 
no coupling (s~,s2,s3 are directed from the Lorentz 
point Lo). The ellipse represents a plane reference 
circle through Lo normal to the principal axis, and the 
curvilinear-bounded planes above it are parts of the 
tangential planes of the intersecting spheres of radius 
K about the points O, hE, and ha. These planes intersect 
in the edges tt,tE, t3. A tiepoint T far from the edges 
represents a single, nearly uncoupled ray and it must 
therefore lie on the appropriate tangent plane to one 
of the spheres. As T approaches one of the edges, two 
of the rays are coupled, and the SurfDisp leaves the 
tangent planes, so that the top sheet is lifted towards 
the parallels to the t-lines going through the Laue 
point La. For the symmetrical case the intersection of 
the SurfDisp with the symmetry plane (hatched) is 
drawn. Here the top sheet gets much closer to the 
Lauepoint than in the peripheral regions. This ac- 
counts for the enhancement of the Borrmann effect by 
the presence of the third ray. 
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Principal 
~'~ - t  Axis 

,li_,, 

S2 

h3 

Fig.5. The top sheet of the SurfDisp for rays 1,2,3 in germa- 
nium if rays 2 and 3 are related by a symmetry plane con- 
taining ray 1. The symmetry plane is indicated on the border 
of the Figure. The stippled planes, sustained each by two 
of the -t-vectors, are part of the tangent planes to the 
spheres through Lo with O, hh and ha as centres; they form 
the SurfDisp when only one ray is strong. Two strong rays 
exist near the -t axes, and here the top sheet of the SurfDisp 
is lifted out of the angle formed by the tangent planes, so 
as to form one branch of the well-known SurfDisp for two 
rays, namely a hyperbolic cylinder which descends parallel 
to the t axis towards the Lorentz point, provided the coup- 
ling to the third ray is neglected. This coupling, in turn, 
acts like a tension on the surface along the three t axes, 
pulling the sheet away from Lo, so that its section with the 
symmetry plane - shown with vertical hatching - brings the 
surface much closer to La than it would be without the 
coupling. This is the origin of the enhanced Borrmann 
effect. 

(10.5) A numerical estimate 

In the case of  germanium, 111/1il /020, and Cu K 
radiation we have [using the same data  as Hi ldebrandt  
(1966)] 

a =  5.6575 A, 2 =  1.5390 A [=(22=1 +2=2)/3] (69) 

fl = 2/a = 0.27203; f12 = 0.07400, 

and by (51) 

s =s~2=s~3 =0.889;  s z =0.7903 ] 

s' =s23 = 0-852; s'2 = 0.7259 J" . (70) 

The intersection of  the SurfDisp  with the symmetry 
plane is then 

~'2(2" 12" - -  0" 926) (Za Z -- 0" 864) = 0 .  (71) 

The two intersections closest to La are at  

z l = r =  l /~926=0.9623  and 1/~8-6-4-3=0.9297. (72) 

Fo r  an isolated ray the distance of  its tiepoint, the 
Lorentz point, f rom La would be expressed as rl = v = 1 ; 
for rays 1 and 2 (without 3) the SurfDisp  is given in 
(9.1), and the closest approach to the Laue point  is 
given by 

2"1 = ~'2 = It'lL[ = 1/I/2 = 0"7071 . 

Thus, without taking account  of  absorption,  the nearest 
approaches  to La are in the one-, two-, three-ray cases 
as 

1 : 0.2929: 0.0377 = 26.5: 7 .76 :1 .  (73) 

At  the opt imum, the dipole ampli tude in the three-ray 
case is thus only 1/26th of  that  of  an isolated ray, and 
about  1/8th that  of  the smallest value in the two-ray 
case. The effective absorpt ion coefficient for ampli tude 
would be expected to be reduced in the same ratios. 
This gives a pronounced 'double Bor rmann  effect'. 
Taking absorpt ion into account  pushes the top sheet 
of  the SurfDisp  away f rom La, towards Lo, and this 
diminishes the effect; but, especially near  the Laue 
point, absorpt ion remains a secondary effect. 

When all structure or coupling factors are unity, as 
in case 1 of  the enumerat ion (Fig4), no double Bor rmann  
effect occurs;  for then, even in the two-ray case, maxi- 
m u m  efficiency is reached because the wavelets scat- 
tered by all a toms are in full phase-cooperat ion.  
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